Duda n° 1

Esta duda viene de parte de Eli, a quien envío un gran saludo y deseo mucho éxito en su PAES!.

Me solicita resolver el siguiente problema

Problema: «Una fábrica de zapatos debe entregar un pedido de T pares de zapatos en tres días. Si el primer día entrega \(\frac{2}{5}\) de él, el segundo día \(\frac{1}{3}\) de lo que resta y el tercer día \(\frac{1}{4}\) del resto, entonces lo que quedó sin entregar es»

a) \(\frac{1}{10}T\) b) \(\frac{9}{10}T\) c) \(\frac{3}{10}T\) d) \(\frac{1}{5}T\) e) \(\frac{1}{60}T\)

Solución:

Vamos ir determinando lo que se ha entregado día a día

Día 1: El primer día se entrega \(\frac{2}{5}T\) por lo tanto lo que queda aún pendiente es

\[T-\frac{2}{5}T=\frac{3}{5}T\]

Día 2: Este día se entrega \(\frac{1}{3}\) de lo que resta, es decir,

\[\frac{1}{3}\cdot \frac{3}{5}T=\]

\[\frac{1}{5}T\]

Con esto calculado, podemos restarlo a lo restante del día anterior para obtener la nueva cantidad pendiente

\[\frac{3}{5}T-\frac{1}{5}T=\]

\[\frac{2}{5}T\]

Esta cantidad es nuestro nuevo referente, es lo que falta por entregar luego de los dos días.

Día 3: Este día se entrega \(\frac{1}{4}\) de lo restante. es decir,

\[\frac{1}{4}\cdot \frac{2}{5}T=\]

\[\frac{1}{2}\cdot \frac{1}{5}T=\]

\[\frac{1}{10}T\]

Con esto calculado, podemos restarlo a lo restante del día anterior para obtener la cantidad pendiente que buscamos

\[\frac{2}{5}T-\frac{1}{10}T=\]

\[\frac{4}{10}T-\frac{1}{10}T=\]

\[\frac{3}{10}T\]

Respuesta final, luego de los tres días de trabajo, la cantidad restante a entregar es \(\frac{3}{10}T\)

Alternativa C.

Comentarios

No hay comentarios aún. ¿Por qué no comienzas el debate?

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *