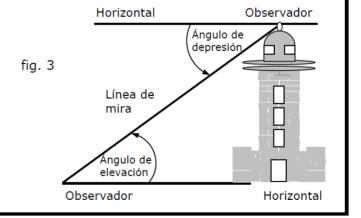
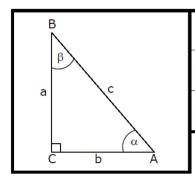

Razones Trigonométricas

En el triángulo ABC, rectángulo en C (figura 1), se definen las siguientes razones:


RAZONES TRIGONOMÉTRICAS PARA ÁNGULOS DE 30°, 45° y 60°

Considerando los triángulos de las figuras 1 y 2, se tiene que:

Ángulos de **elevación** y de **depresión** (fig. 3) son aquellos formados por la horizontal, considerada a nivel del ojo del observador y la línea de mira, según que el objeto observado esté por sobre o bajo esta última.


Con respecto a un observador, los ángulos de elevación y de depresión constituyen ángulos alternos internos entre paralelas, por lo tanto, sus medidas son iguales

Depto. Matemática Prof. Esteban Aros S.

IDENTIDADES TRIGONOMÉTRICAS FUNDAMENTALES

Las identidades 1, 2, 3, 4 y 5 se deducen directamente de las definiciones de las razones trigonométricas. La identidad 6, se deduce combinando las definiciones con el Teorema de Pitágoras.

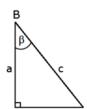
1.	$sen\;\alpha\cdotcosec\;\alpha=1$	4.	tg α	$=\frac{\text{sen }\alpha}{\cos \alpha}$

2.
$$\cos \alpha \cdot \sec \alpha = 1$$
 5. $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$

3. tg
$$\alpha$$
 · cotg α = 1 6. sen² α + cos² α = 1

Ejercicios

1. De acuerdo con el triángulo ABC de la figura, ¿qué relación es verdadera?


a.
$$sen \beta = \frac{c}{b}$$

b. $sen \beta = \frac{a}{b}$

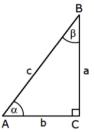
b.
$$sen \beta = \frac{\beta}{2}$$

c.
$$\cos \beta = \frac{b}{c}$$

d.
$$\operatorname{tg} \beta = \frac{b}{a}$$

e. Ninguna de ellas

2. Con respecto al triángulo rectángulo ABC de la figura, ¿cuál de las opciones siguientes es verdadera?

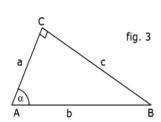

a.
$$\sec \beta = \frac{c}{b}$$

b.
$$\cos \alpha = \frac{a}{2}$$

c.
$$\cot \beta = \frac{b}{2}$$

d.
$$co \sec \alpha = \frac{1}{2}$$

e.
$$sen \beta = cos \alpha$$

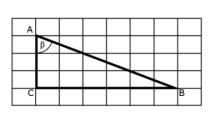


- 3. Con los datos de la figura, la expresión $tg\alpha$ – $sen\alpha$ es igual a
- 4. Si los catetos de un triángulo miden 8 cm y 15 cm, entonces el seno del ángulo agudo mayor es

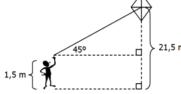
a.
$$\frac{ac-bc}{ab}$$

b. $\frac{ac-bc}{ac-bc}$

b.
$$\frac{ac-bc}{bc}$$


d.
$$\frac{ab}{bc-ac}$$

- 5. En la hoja cuadriculada, cada cuadrado tiene lado 2. Entonces, en el $\triangle ABC$ la tangente del ángulo β es igual a
- 6. Si $\cos \alpha = \frac{8}{17}$, entonces $\csc \alpha =$


- e. $\sqrt{5}$

Liceo Bicentenario Los Ángeles

- 7. Un avión despega del aeropuerto con un ángulo de elevación de 30° como se muestra en la figura. Si ha recorrido desde el punto de despegue una distancia de 1000 metros, ¿a qué altura, respecto del suelo se encuentra?
- 8. ¿Cuál es la longitud de la sombra proyectada por un edificio de 50 m de altura cuando el sol se ha elevado 40° sobre el horizonte?
- a. $5 \cdot tg40^{\circ}$ m b. $\frac{50^{\circ}}{sen40^{\circ}}$ m c. $\frac{50^{\circ}}{tg40^{\circ}}$ m
- d. $\frac{tg40^{\circ}}{50^{\circ}}$ m
- a. $500\sqrt{3}$ m b. 500 m c. $\frac{1000}{\sqrt{}}$ d. $\frac{100}{\sqrt{3}}$ m
- 9. ¿Cuál es la longitud del hilo que sujeta el volantín de la figura, si el ángulo de elevación es de 45°?
- $10. \text{ Si } k = \cos^2 60^\circ + \cos^2 50^\circ +$ sen²50°, entonces 4k es igual a

- a. $20\sqrt{2}$ m b. 21,5 m
- c. $21,5\sqrt{2}$ m
- d. 20 m
- e. $10\sqrt{2}$ m

- b. 6
- c. 5
- d. 1.25
- e. 1
- 11. Si α es un ángulo agudo, ¿cuál(es) de las siguientes igualdades es (son) identidad (es)?
- i. $tg\alpha \cdot cosec\alpha = sec\alpha$ ii. $\frac{1}{1-\cos^2\alpha} = cosec^2\alpha$
- iii. $(sen\alpha + cos\alpha)(sen\alpha cos\alpha) = 2sen^2\alpha 1$
- 12. ¿Cuál de las siguientes expresiones representa el cuadrado del coseno de α ?

- a. Solo i
- b. Solo ii
- c. Solo iii
- d. Solo i y ii
- e. i, ii y iii

- a. $cos\alpha^2$ c. $1 + sen^2 \alpha$
- d. $\frac{1}{\sec^2 \alpha}$
- e. $sen^2\alpha 1$
- 13. Si β es un ángulo agudo de un triángulo rectángulo, ¿cuál(es) de las siguientes igualdades **NO** es(son) identidad(es)?
- i. $sen\beta + cos\beta \cdot cotg\beta = cosec\beta$
- ii. $sec\beta \cdot sen\beta = \sqrt{sec^2 \beta 1}$
- iii. $tg\beta \cdot sen\beta = cos\beta$

14. Si $\cos^2 \beta = \frac{4}{9}$, entonces $3 sen \beta =$

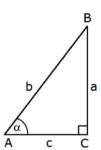
- a. Solo i
- b. Solo ii
- c. Solo iii
- d. Solo i y ii
- e. i, ii y iii

Liceo Bicentenario Los Ángeles

Problemas:

Verifique las identidades trigonométricas a partir de las funciones dadas.

1.
$$(1 - sen^2\alpha) sec^2 \alpha = 1$$


2.
$$sen \alpha \cdot tg \alpha = sec \alpha - cos \alpha$$

3.
$$\cos \beta \cdot \cot \beta = \csc \beta - \sec \beta$$

$$4. \frac{\sec^2 \alpha}{t a^2 \alpha} = \csc^2 \alpha$$

5.
$$sen \alpha(cosec \alpha - sen \alpha) = cos^2 \alpha$$

- 6. Un cohete es lanzado a nivel del suelo, en un ángulo constante de 60° hasta una distancia de 3.000 metros. Determine a qué altura se encuentra del suelo. (R. 2.598 m)
- 7. Sabiendo que el ángulo de elevación del sol, a cierta hora del día es de 30°, determine la longitud de la sombra que proyecta una persona que mide 1,6 m. (R. 92,3 cm)
- 8. Una escalera de 8 metros se encuentra apoyada en una pared y forma con ésta un ángulo de 40°. Calcule la distancia entre la pared y el pie de la escalera. (5,14 m)
- 9. Con los datos de la figura, la expresión $(sen\alpha + cos\alpha)^2$ es igual a:

